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ABSTRACT
Conveying uncertainty in information artifacts is difficult;
the challenge only grows as the demand for mass commu-
nication through multiple channels expands. In particular,
as natural hazards increase with changing global conditions,
including hurricanes which threaten coastal areas, we need
better means of communicating uncertainty around risks
that empower people to make good decisions. We examine
how people share and respond to a range of visual represen-
tations of risk from authoritative sources during hurricane
events. Because these images are now shared widely on so-
cial media platforms, Twitter provides the means to study
them on a large scale as close to in vivo as possible. Using
mixed methods, this study analyzes diffusion of and reac-
tions to forecast and other risk imagery during the highly
damaging 2017 Atlantic hurricane season to describe the
collective response to visual representations of risk.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in
collaborative and social computing;
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1 INTRODUCTION
Disaster events arising from natural hazards are character-
ized by uncertainty, such as who or where will be impacted,
how and when to evacuate, or how much damage will be
sustained. Risk communication therefore is critical, as its
purpose is to provide information about a potential hazard
and its impacts for people to use to protect themselves and
mitigate destruction. However, communicating risk is itself
challenging, as it often includes depicting probabilities or a
range of scenarios in ways that people can understand and
make decisions about. Communicating natural hazard risks
has been and remains a central concern to emergency prac-
titioners and weather scientists alike, no matter the mode
of communication. Visualizations with maps and satellite
imagery are typical forms of communication to reach popula-
tions in the broad swaths of geography that are threatened by
hazards. Such images are “products” that are issued by formal
organizations periodically and distributed to news stations
and emergency management groups to use locally [13].
Hurricanes are the focus of this study because of the

tremendous risk they pose to people’s well-being. Moreover,
hurricane attributes such as their size, motion, intensity,
and associated risks are predictable to an extent, albeit with
uncertainty, yet they all can rapidly change leading up to
landfall. Thus, weather forecasts and related products are dis-
tilled representations of risk communication about evolving
hurricane threats [7, 8, 38]. Here we look at different types
of visual hurricane risk information, as shown in Figure 1,
including hurricane forecasts (e.g. the cone of uncertainty
and ensemble or “spaghetti” models), observations of the
hurricane (e.g. radar or satellite imagery) which inform risk
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(a) Cone of uncertainty (b) Spaghetti plot

(c) Satellite image (d) Evacuation map

Figure 1: Example hurricane risk images. Credit: NOAA,
FOX 26 Houston, WPLG Local 10.

assessment and forecasts, and evacuation information. We
refer collectively to these as hurricane risk images.

People in hurricane-threatened regions are frequently ex-
posed to these images, which have long been available via
television stations, newspapers, and the National Hurricane
Center (NHC) website. In recent years, social media has be-
come another important means for distributing hurricane
risk information, especially given that hurricanes typically
form several days before landfall, offering much opportunity
for people to discuss their risk and make meaning of these
information products. Despite the prevalence and variety
of hurricane risk images, the emergency management and
weather science communities know little about the effec-
tiveness of visual risk communication in supporting risk
assessment and decision-making.

This multi-method investigation empirically examines the
diffusion of visual risk communication products during the
sequence of hurricane events during the 2017 Atlantic Hurri-
cane season to understand which products diffuse and how.
We investigate aspects of individual and collective human
interaction with imagery that is generated and shared by au-
thoritative sources, using Twitter as the platform for captur-
ing this activity. As part of the research design, we collected
tweets from these sources to focus on scientifically-informed
representations. However, as we discuss in Section 7, the
data collected in response to these posts were not restricted
in any way. To begin, we inductively examined the images:

RQ1: What kinds of hurricane forecast and other risk
graphics are posted by authoritative sources?

Then, to understand human interaction with hurricane
risk imagery, we first had to measure the diffusion of such
images on Twitter. Because there are many different kinds of
risks visualized for a hurricane, such as its potential track or

current location, its impacts if/when it occurs, and protective
and preparedness information provided to reduce one’s harm
from it, we also want to know how the response differs
to images portraying different kinds of risk. Diffusion of
risk imagery is likely to be driven by a number of factors,
including but not limited to the type of risk depicted in the
image and the type of authoritative source from which it
comes, as there are differences in the function and mission
of different groups who convey hurricane risk [13]. Thus,
we ask a second set of research questions:

RQ2: How do different types of authoritative-source
forecast and risk images diffuse for hurricane events?
How does diffusion differ based on the type of image,
or the authoritative source user?

Finally, after characterizing what types of imagery were
diffused by whom and how they diffused, we sought to un-
derstand more about why the images diffused as they did:

RQ3: What does the content of replies and retweets/
quote tweets reveal about how people relate to hurri-
cane risk and forecast images?

We conducted three studies to answer each of the research
questions: a descriptive statistical analysis of a hand-coded
dataset of authoritative hurricane risk images (RQ1, Section
4), a bivariate statistical analysis of the diffusion of these im-
ages using new diffusion metrics developed for this research
(RQ2, Section 5), and targeted qualitative analyses of diffused
content (RQ3, Section 6).
Findings contribute to multiple concerns in the expand-

ing field of human-computer interaction, including that of
information visualization and challenges with representing
concepts like uncertainty, risk, and probability in consumable
ways for a broad public [19, 25]; the relationship between for-
mal and informal risk communication by computer-mediated
means in disaster response [20, 44]; understanding the nature
of information diffusion on widely adopted social platforms,
and devising methods for that study [17, 48]; and supporting
needs of the weather scientific and practitioner communi-
ties to understand socio-behavioral phenomena around their
information products [42].

2 BACKGROUND
We organize the background review section to first consider
what the research reveals about the effectiveness of hurri-
cane risk imagery in general. We then segue to studies in
crisis informatics that attend to risk communication. Finally,
because this research relies on methods for examining the
complicated matter of social media information diffusion,
we briefly review the most relevant literature in this area.

Perceptions about Hurricane Risk Images
Research on hurricane forecast image interpretation has been
mostly conducted in the laboratory [43, 46, 50, 57] and via
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surveys [28, 37, 39]. Research has shown that people confuse
deterministic and probabilistic forecasts, but prefer forecasts
that explicitly express uncertainty [39, 57]. For hurricanes,
though, depictions of risk and uncertainty can be difficult
to effectively communicate and interpret [13, 15]. The type
of graphic used affects interpretation. Forecast uncertainty
visualizations can display summarized uncertainty statistics
or an ensemble of multiple data values or scenarios [43].
Summary displays like the cone of uncertainty are commonly
misinterpreted as showing a hurricane’s size or intensity [8],
while ensemble displays such as spaghetti plots which show
a range of probably hurricane tracks are misused for point-
based judgments rather than identification of larger patterns
[43, 50]; even forecasting experts have made these errors
[45]. “Indexical” images—photos of damage—may have more
impact on risk perception than iconical images—evacuation
maps and forecasts—because they are perceived to provide
“proof” of risk [46].

Missing from these studies is the ecological validity that
comes from in vivo examination, which we hope to account
for in part in this study. This is because in addition to cogni-
tive perceptions of forecast visuals, context and social pro-
cesses also affect interpretations of risk messaging and pro-
tective decision-making behavior [32]. Prior experience with
a weather phenomenon plays a significant role [12]. Simi-
larly, evacuation decisions are influenced not only by risk
information, but also by other variables like information
source, household location, and vulnerabilities [23, 34].
Visual representations are more effective for communi-

cating risk and making risk information useful for decision
making than numerical representations because they reveal
data patterns, hold attention, and match the qualitative ways
people judge probabilities [33, 49].

Imagery & Risk Studies in Crisis Informatics
Though a majority of research on social media and disas-
ters has focused on text communication as it supports self-
organization and peer production [29, 54, 56, 60], informa-
tion verification and rumor detection [35, 36, 52], localized
versus international social media conversations in disas-
ters [9, 30], and natural language processing and machine
learning techniques [26, 27], a small but growing body of
research examines the visual components of such commu-
nication [40, 51, 58]. We know that images not only receive
more engagement on social media platforms than text-only
posts [47], but also communicate more—and more complex—
information. Graphics are generally better than numerical
or textual representations for communicating risk [33]. The
photographs and other visual images shared by those clos-
est to the disaster have a different quality and orientation
toward accuracy than those by distant onlookers [6]. Photos
of damage can provide crucial information to humanitarian
groups [1]. These examinations inform how we collected

data and sampled and interpreted the communications be-
tween formal and informal response as well as within the
informal response.

In terms of risk information, research about the Zika virus
showed that social media users desired specific, contextual-
ized information, and that local knowledge was important
to inform decision-making [21]. Risk perception around the
Zika epidemic was multidimensional and speculative, high-
lighting the need for greater engagement of the public in
risk communication [20].

Diffusion via Social Media
Methods for studying the diffusion of forecast and risk im-
agery based on image content and source are themselves
important to this work, as diffusion indicates how and to
what extent images receive attention online. Information
diffusion on social media is a well-studied area. Research
has modeled information diffusion on online social networks
like Twitter and Digg [31], including the role of strong and
weak ties [5], or determining whether “cascades” or virality
can be predicted based on features of the network or content
itself [10]. Goel et al. [17] defined a diffusion measure, “struc-
tural virality,” to distinguish between tweets that diffuse by
broadcast versus virally; it uses follower networks to infer
diffusion of tweets across users. In this research, we focus
on timing rather than follower relationships because of the
rapidly evolving nature of hurricanes. We are also interested
in not just retweets, but also replies and quote tweets, as the
latter can include context from the diffusing user such as
emotional reactions, clarifying questions, and descriptions
of how the information impacts them, all of which can be an-
alyzed qualitatively for further understanding of the reasons
for diffusion.
Research on crisis-related information diffusion includes

how certain memes became viral during a political uprising
[55], how rumors around a crisis event propagate and the
trustworthiness of information [4, 16, 36], and differences in
how “locals” and “globals” share information [30, 53], all of
which contribute to our method and interpretation.

3 2017 ATLANTIC HURRICANE SEASON
The 2017 Atlantic hurricane season, which officially ran
from June 1 to November 30,1 was especially active and
catastrophic: ten hurricanes formed, with six classified as
“major,” meaning Category 3 or stronger (i.e., winds greater
than 110 mph) as measured by the Saffir-Simpson Hurricane
Wind Scale. Extensive damage was sustained in the south-
eastern US, Mexico, Central America, South America, and
many island countries and territories in the Caribbean Sea.
The most active portion of the season was a period of just
over ten weeks and included seven hurricanes: Harvey, Irma,

1https://www.nhc.noaa.gov/climo/
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Figure 2: Tracks of Hurricanes Harvey, Irma, Maria, and
Nate during the 2017 Atlantic season. Credit: CNN.

Jose, Katia, Lee, Maria, and Nate. This research focuses on
four of these (see Figure 2): three which made landfall classi-
fied as major hurricanes—Harvey, Irma, and Maria—as well
as Hurricane Nate, which was the costliest natural disaster
ever in Costa Rica. (Jose and Lee didn’t make landfall; Ka-
tia hit as a weak Category l with lesser damage than other
events.) Thousands of fatalities occurred due to the season’s
hurricanes, including an estimated 2,975 alone in Puerto Rico
after the massive destruction from Maria.2

4 STUDY 1: IMAGE COLLECTION & CODING
Data and Methods
We used a top-down approach to collect hurricane risk image
tweets from accounts we identified as “authoritative sources”
of information about hurricanes and their associated risks.

Identification of Authoritative Sources. Authoritative sources
are people and organizations who provide authoritative and
credible hurricane forecasts, observational information, and
associated risks. Though others shared forecast and risk im-
ages on Twitter, we designed the scope of the investigation
to examine the diffusion of and conversation around what
originates as scientific communication. The primary groups
who create and communicate hurricane risk and forecast
information, known as the “hurricane warning system” [13]
consist of the National Weather Service (NWS) forecasters at
the National Hurricane Center (NHC) and local weather fore-
cast offices who characterize and convey hurricane threats,
emergency managers and other government officials who
take actions (e.g., issue evacuation orders) to protect citizens,
and television and other media personnel who curate and
communicate hurricane information [7, 38].
We identified these sources in two ways: manually, em-

ploying the expertise of one of our authors and other collab-
orators who work in meteorology and weather risk commu-
nication at the National Center for Atmospheric Research
2https://www.bbc.com/news/world-us-canada-45338080

Table 1: Counts of Twitter accounts and risk image
tweets for each authoritative source user category.

User Category Accounts Original Tweets

Weather-News 188 38.4% 9433 57.1%
Weather-Gov’t 41 8.4% 2890 17.5%
Weather-Other 14 2.9% 472 2.9%
News/Media 142 29.0% 3067 18.6%
Government 98 20.0% 657 4.0%
Other 6 1.2% 12 0.1%

Total 489 100% 16,531 100%

(NCAR), and via user-created lists that compile Twitter ac-
counts of official information. For manual identification, we
created lists of users for each major and/or landfalling hurri-
cane as it occurred (Harvey, Irma, Maria, and Nate), as well
as kept a running list of “general” sources that applied to
all events (e.g. NWS). Though we did not identify sources
specifically for the minor and/or non-landfalling hurricanes
that occurred in between (Jose, Katia, and Lee), these hurri-
canes were included in the tweet data of many of the sources
we identified. For the Twitter lists, we found two public lists
each for Harvey and Irma,3 created by twitterers @mattd-
pearce, a national correspondent for the Los Angeles Times,
and @FEMAlive, the official FEMA account for live chats
and events, which is only active during specific events.

In total, the research identified 796 Twitter accounts, classi-
fied into one of five categories: Weather-News/Media: TV
meteorologists; websites or TV channels devoted to weather,
or theweather division of broadcast news channels;Weather-
Government: weather-related government agencies like
NOAA, NASA; meteorologists/scientists at NWS, including
NHC; Weather-Other: independent weather experts, re-
searchers, and stormchasers; News (non-weather-specific):
local through international news and media agencies, re-
porters, journalists, and photographers; TV and/or online; or
Government (non-weather-specific): public officials; emer-
gency management; government agencies and departments;
military; city, county, and state accounts. Counts of accounts
and tweets that constituted the final data set for each of these
authoritative source user categories are shown in Table 1.

Tweet Data Collection. For each authoritative source, we next
collected: all tweets from the user, all tweets in reply to the
user, and all retweets and quote tweets (similar to retweets,
but including extra comments from the reposter) of the user’s
tweets—what we collectively refer to as a user’s contextual-
plus tweet stream. The “plus” refers to the extension of the
data collection method for “contextual tweet streams,” which

3Hurricanes Maria and Nate did not have similar Twitter lists, and so we
manually identified local sources of risk information for these.
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entails collecting all tweets posted from the set of identi-
fied users over some window of time [3]. By additionally
collecting the replies to and retweets of these authoritative
users’ tweets, we can study their diffusion quantitatively and
qualitatively, including the conversations that form around
users’ original tweets. Contextual-plus and simple contex-
tual tweet streams identify a far larger proportion of event-
related tweets than relying on keywords and hashtags alone
[59], and they typically contain more contextual information
about a user’s experience with the event [2].
We collected the contextual-plus tweet streams of each

of the 796 authoritative starting when Harvey first formed
to when Nate dissipated (Aug. 17–Oct. 10, 2017), totaling
9,866,351 tweets. We are interested in risk information and
responses pertaining to the forecast phase of a hurricane—
i.e., when the hurricane is threatening and occurring—rather
than the post-disaster response and recovery phases. So,
though the impacts of each hurricane continued long after
the final date chosen for this research, the content inform-
ing risk assessment and preparatory decision-making was
produced in the time leading up to landfall.

Coding Images for Hurricane Forecast/Risk Information. The
first round of coding identified all tweets posted by authorita-
tive sources containing hurricane risk imagery (either as still
images, videos, or animated GIFs). Of the 9.87M contextual-
plus tweets, 85,308were original tweets with imagery posted
by an authoritative source account. Coding was done by the
first author and five trained paid coding assistants. The task
was binary: an image tweet was coded as either containing
a hurricane risk image or not. The coders had a detailed
training document with the coding scheme which included

14 types of risk information to be coded as well as example
non-hurricane risk images. These categories were developed
iteratively across the initial coding task, and then reapplied
across the set once the list was stable.

All coding by the assistants was in the presence of the first
author. The inter-rater reliability among all six coders was
measured with Krippendorff’s alpha at three points through-
out the five weeks of coding and increased from beginning
(α=0.84), to middle (α=0.88), to end (α=0.95); all are consid-
ered acceptable for agreement [41]. From this round of cod-
ing, we identified 16,789 (19.7% of the original 10M) tweets
containing hurricane risk imagery from 500 (62.8% of the
original 796) authoritative source accounts.
A second round of coding was conducted by the first au-

thor to classify the specific type of each of the identified risk
image tweets. The coding scheme was expanded from the 14
categories outlined in Round 1 coding to 22 categories which
included greater detail. Any number of the 22 low-level cate-
gories could be applied to an image tweet. 258 tweets were
removed in this round of coding due to the tweet or account
being deleted by the service provider or the user.
In this paper, we selectively scope the analysis for eight

exemplary risk image categories which are prominent
visual hurricane representations spanning multiple types of
risks. The Round 2 coding results for these categories are in
the first three columns of Table 2. A total of 16,531 (19.4% of
all tweets from authoritative sources) original tweets from
489 (61.4% of the initial 796) sources were identified as con-
taining risk imagery. By qualitatively coding these tweets in
this iterative manner, we were able to answer RQ1.

Table 2: Description of categorized data set of authoritative-source hurricane risk image tweets and their diffusion.
Because image categories are non-mutually exclusive and any number of categories can be applied to an image
tweet, the columns add up to more than 16,531 (the total number of tweets), or more than 100% for percentages.
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Hurricane Risk Images: What Does (Not) Diffuse
Using the full contextual-plus data of the 9.87M image tweets,
we next identified all users who engaged with the 16K orig-
inal risk image tweets, by either replying directly to them
(depth) or retweeting/quote tweeting them, thus creating
a new thread around the risk image on their own Twitter
timelines (breadth). While reply diffusion reveals a variety
of conversations among likely strangers on an authoritative-
source image, retweet diffusion can reveal more personalized
reactions to images when retweeted on a user’s own timeline.

In total, 259,649 unique users (not already included in the
489 authoritative sources) diffused the 16,531 authoritative-
source risk image tweets. Of these tweets, 14,184, or 86%,
were retweeted a total of 523,509 times by 240,795 users,
and 6561 tweets, or 40%, were replied to 36,154 times by
26,692 users. A much smaller proportion (3000, or 7%) were
quote-tweeted (“quoted”), while 13% were not diffused at all,
meaning they were not replied to, retweeted, nor quoted.
Different hurricane risk image categories diffused differ-

ently, shown in Table 2. The most common category is un-
certainty at 41% of all tweets in the data set; this category
comprises mainly cone of uncertainty images, which account
for 31% of tweets. Radar/satellite image tweets, which rep-
resent the current state (observations) of a storm, were
the next most common at 38%. Tweets with a spaghetti plot,
another representation of the hurricane itself, were uncom-
mon at only 3% of the data; however, this category had the
highest percentage of tweets that were replied to at 62% and
nearly the highest that were retweeted at 92%, compared
to 44% replied to and 85% retweeted for radar/satellite and
41% replied to and 83% retweeted for cone of uncertainty.
Note that cone and spaghetti plot graphics both represent
potential future states (forecasts) of a storm.
The past category consists of imagery conveying infor-

mation about risks from past hurricanes, whether from days
or years ago. Though there were only 131 past risk image
tweets (0.8% of the data set), these had relatively high rates
of replies (56%), retweets (92%), and quote tweets (15%) com-
pared to other categories. This suggests that these images
were engaging, and were useful, in some way, to convey
risk about the current hurricane threats. We return to this
phenomenon of past risk imagery in the subsequent studies.

5 STUDY 2: DEFINING & MEASURING DIFFUSION
This study addresses how different risk image categories of
tweets diffused (RQ2). We examine the diffusion patterns
of a given tweet or class of tweets relative to image content
(the type of risk imagery) and the authoritative sources.

In hurricane events, which require frequent updates as
storms evolve, temporal diffusion reveals insights about up-
take in relation to physical events. The research therefore

considers the period for which risk information stays rele-
vant by investigating how quickly it diffuses, for how long,
howmany users are reached, and how these diffusionmetrics
differ across different kinds and sources of risk information.

Method
This study focuses on retweet and reply diffusions. Retweets
are often used as a way of constructing networks to under-
stand diffusion [11, 17, 22, 31], and they capture the breadth
of diffusion of a tweet, in that many users who may or may
not follow the original twitterer repost to their own time-
lines, potentially exposing it to a new set of people. Replies,
on the other hand, represent the depth of diffusion of a tweet,
because they form a discussion thread or threads attached
to the original tweet itself.
To measure the diffusion of hurricane risk image tweets

based on their retweets and replies, we graphed diffusion
“cumulative adoption curves” [17] for individual tweets in
the data set, which show cumulative count of retweets or
replies across time. These can be thought of as “diffusion sig-
natures” for each tweet. From these signatures, we identified
three primary characteristics which contribute to diffusion:
total count, duration, and rate. (See examples in Figure 3.)
Because of the long tail of tweet diffusion (77.8% of tweets
are diffused once or not at all), diffusion analyses using the
count turned out to be insignificant. Thus we focus on the
other two characteristics.
The duration represents how long a tweet was diffused,

and is measured from the time a tweet was first posted to
when it received its final retweet or reply; it represents the
“life span” of the tweet. The rate is calculated as the gradient
of the count of tweets over time, starting from the origi-
nal tweet. The duration and rate metrics are calculated for
retweet-, quote tweet-, and reply-based diffusion. Rate is mea-
sured using the first 95% of a tweet’s diffusion (i.e. its replies,
retweets, or quote tweets), an empirically-determined value
which accounts for the steady, initial wave of diffusion and
ignores the tail-end where people reply or retweet long after
the tweet was first posted, as depicted in Figure 3 in black.
The first 95% of the diffusion signature tends to have the
steepest slope or, more precisely, the fastest rate of diffusion.

Diffusion by Risk Image Category
For a given risk image category, we conducted statistical anal-
yses (Kruskal-Wallis tests4) to compare diffusion of tweets
coded with that category to diffusion of all others (i.e., tweets
not codedwith that category). These tests were performed for
each diffusion mechanism (reply, retweet, and quote tweet)
and metric (duration and rate). Though we calculated these
values for quote tweet diffusion, few differences in quote
tweet diffusion metrics were statistically significant, given

4For the Kruskal-Wallis test, we comparedmedians of diffusion distributions.
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Figure 3: Diffusion adoption curves for top retweeted tweets,
as an example to demonstrate metrics. Black portions repre-
sent the final 5% of diffusion (e.g., the last 5% of retweets).
Rate is calculated for the first 95% of diffusion per tweet; du-
ration and count are calculated for the entire curve.

how infrequently the original 16K tweets were quoted. Addi-
tionally, all quote tweet findings that were significant were
directionally the same as for retweets, i.e., for both retweet
and quote tweet diffusion, tweets for a given image category
had a longer (shorter) duration, and/or a faster (slower) rate.
Thus, only significant results for reply and retweet diffusion
are presented in Figure 4, for eight risk image categories.

The Duration column of Figure 4 shows for each risk im-
age category the median duration of tweets in that category
compared to that of tweets in all other categories, separately
for replies and retweets. All significant results reveal longer
diffusion durations for tweets with a given risk image cate-
gory than without.5 For example, cone of uncertainty image
tweets are replied to for a significantly longer time (1:14 vs.
0:51) and retweeted for a significantly longer time (2:44 vs.
2:14) than other risk image tweets, as seen by comparing the
black bars to the gray bars in the cone of uncertainty graph
for Duration. In fact, all four forecast image categories ex-
hibit similar duration patterns of ~1–3 hours for replies and
retweets; this mirrors the temporal frequency with which
new hurricane forecast information is provided, including
by NHC, which updates the cone and other products every
three hours when a coastal watch/warning is in effect. The
category with the longest duration signature is past with
a median retweet duration of greater than nine hours, sug-
gesting that the information in these risk images has longer
temporal relevance; we explore this further in Study 3.
The Rate column of Figure 4 shows for each risk image

category the median rate of replies to and retweets of tweets
in that category compared to that in all other categories.

5This is possible because we only show 8 of the total 22 risk image categories;
other categories exhibit the opposite trend, balancing these results.

Figure 4: Diffusion measurements (duration, the lifespan of
a tweet, and rate, the speed at which a tweet diffuses) for
replies to and retweets of risk image categories.

Radar/satellite images had faster reply diffusion than others
(2.2 vs. 1.6 tweets per hour). As a type of observational risk
image, this category portrays current conditions and very
near-term risk in a way that is different from other risk image
categories. Radar/satellite imagery plausibly has a high rate
of diffusion because it conveys what is currently happening
in a visually compelling way (e.g. Figure 1c) that people can
make meaning out of even if they do not understand the tech-
nical details of the image. NWS/NOAA tweets—authoritative
risk image products stamped with a logo from one of these
organizations, regardless of the source user—are retweeted
faster (9.4 vs. 5.6 tweets per hour) than other categories and
have the fastest retweet rate among the eight presented here.
The stamp of a government weather organization on a hurri-
cane risk image likely garners trust from people, prompting
them to disseminate these images more quickly than other
risk images, at a median rate of one retweet per six minutes.

These findings motivated further qualitative content anal-
ysis on how people textually and conversationally respond
to different categories to make sense of these sometimes
surprising results. This analysis is presented in Section 6.
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Diffusion by Authoritative Source Category
As with the risk image categories, we conducted Kruskal-
Wallis tests to compare diffusion across source user cate-
gories. We additionally implemented a non-parametric pair-
wise multiple comparisons procedure (Dunn’s test) to iden-
tify significant differences among source user categories,
rather than differences based on the presence or absence of
a source category. All results have p < .01; durations are
reported as hh:mm.

Diffusion duration. Risk image tweets from Government ac-
counts have a longer reply duration (01:56) than News (00:44)
and Weather-News (00:58) tweets. Government tweets and
Weather-Other tweets have longer retweet durations (05:15
and 04:27, respectively) than all other source categories (News:
02:40, Weather-Government: 02:25, Weather-News: 02:08).
This suggests that risk information from government sources
might have more long-term relevance for affected people,
or more long-term interest for people in general, than risk
information shared by news sources.

Diffusion rate. Weather-Other risk image tweets (from in-
dependent meteorologists, researchers, and stormchasers)
have a faster reply rate (3.7 replies per hour) than Weather-
News (1.9), Weather-Government (1.3), and Government
(1.3) tweets. News tweets have a faster reply rate (2.4) than
Weather-Government tweets. Weather-Government tweets
have the fastest retweet rate, (16.2 retweets per hour), while
Government tweets have the slowest retweet rate (4.1). Though
hurricane risk image tweets from government sources dif-
fuse for a longer time than tweets from other sources, they
also diffuse more slowly, with news sources and independent
weather experts receiving the fastest reply rates, suggesting
that the independents have a broader reach when diffusing
similar types of information. Theymay be valuablemediators
between the product creators and the general public. Inter-
estingly, though general government tweets are retweeted
the slowest, tweets from weather-specific government orga-
nizations like the NWS and NHC are retweeted the fastest.

6 STUDY 3: QUALITATIVE ANALYSIS
To understand the meaning behind these differences in dif-
fusion patterns for different risk visuals (e.g. why are tweets
with the cone of uncertainty replied to for a longer amount
of time than other risk image tweets?), and to address RQ3,
we conducted a targeted qualitative analysis of the textual
and conversational aspects of replies and quote tweets.

Method
We analyzed the content of replies to and quote tweets of a
sample of the original 16K forecast and risk image tweets.
Retweets are not a part of this analysis, as they are simply
references to other tweets that do not contain new textual

content. We selected one image category per type of visual
risk image to get a full representation of the dataset while
also scoping the analysis: cone of uncertainty for hurricane
forecast, radar/satellite for observational information, and
evacuation for preparedness information, as well as past as
a category that cuts across all the others and was shown in
Study 2 to have the longest median duration time. For each
category, we sampled up to 50 original tweets that had more
than three replies or quote tweets (for some categories, there
are fewer than 50 original tweets meeting this criterion). For
instance, if tweets in a given category have a longer reply
duration than tweets in other categories, thenwe selected the
top 50 tweets with more than three replies in that category
with the longest reply durations, then qualitatively analyzed
the content of all replies to these 50 tweets. We extracted
common high-level themes in relation to diffusion topics, and
also remarks that were perhaps not common but noteworthy,
in that they suggest alternative insights that englighten this
research interpretation, and are noted as such.
Here we report findings from analysis of the textual fea-

tures of 9291 replies and quote tweets that contributed to
diffusion of 253 original, authoritative source risk tweets.

Forecast Risks: Cone of Uncertainty
Cone of uncertainty tweets have longer reply and quote
tweet durations and slower reply rates than other categories
of hurricane risk images. There is a stark difference in the
content of the longest-duration replies compared to that of
the longest-duration quote tweets. The replies are primarily
grounded in managing uncertainty about risk, i.e. questions
about the track (“The million dollar question, where does it
turn?”), requests for more localized information (“@hurri-
canetrack chances this moves up to US East Coast?”), and even
expert opinions on travel-related risks (“Hey NHC if you had
a trip schedule for the BVIs from 9/2-9/8 would you cancel?”).
Quote tweets, on the other hand, are more informal and re-
active, especially regarding the onset of Nate after several
other hurricanes: “Break out your bumbershoots and wellies
next week!”, “Well that’s just flippin’ fantastic. Ugh.”, “LEAVE
US ALONE! This has been the worst hurricane season!”.

These differences reflect the mechanics of each type of dif-
fusion: replies are attached to the original risk image tweet
itself, and thus are potentially exposed to others similarly
affected by the hurricane and/or others paying attention to
the same tweet, while quote tweets are posted only to the
quoting user’s timeline, and thus are exposed only to the
quoting user’s friends, family, and followers.

The cone tweetswith the slowest reply rates include replies
days later that revisit the tweeted forecast information, par-
ticularly for Irma (“So weird to look back at this projection.” ),
comparing the Irma track to 2016HurricaneMatthew’s (“This
is hurricane Matthew all over again. Everyone is hysterical but
nothing will happen yet again” ), and expressing discontent
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and distrust in the information conveyed in the cone forecast
(“This cone is deceiving. The hurricane force winds are only 50
miles across. This looks like it is 360 miles large” ).

One person replied to a cone tweet 22 hours later saying:
“TRACK HAS GREATLY CHANGED AND IS STILL CHANG-
ING. TAKE THIS TWEET DOWN. It is misleading.” There are
several interesting points to note with this reply tweet. First,
the speaker is implying that they believe content should
be updated in real time even after a postdate, and that any
outdated information or information that has since evolved
should be taken down, which indicates their misunderstand-
ing about the features of microblog platforms. Second, the
speaker is continuing to propagate the tweet by replying to
it 22 hours later, meaning others would have seen it appear
in their feeds again despite the fact that it was no longer
up-to-date. Third, the tweet represents a misunderstanding
of the track portrayed by the cone graphic, and that though it
is always “changing” at any given moment, the static graph-
ics are only released by the NHC at regular intervals (every
three hours) and are not updated in real time.

Observational Risks: Radar/Satellite
Radar and satellite image tweets had a faster reply rate than
other categories. As mentioned previously, the visually com-
pelling nature of these images likely influences their quick
diffusion, and this is supported bymany replies such as “She’s
beautiful. In a graphic way.”, “Lovely/terrifying”, “Magnificent.”
These kinds of comments are not found on any other kind of
hurricane risk graphics, thus emphasizing the unique ability
of this category of risk imagery to captivate audiences.
People responded to more than the appearance of the

graphics, as well. Similar to the cone, people wanted more
contextualized information to aid their evacuation decisions
(“Thoughts on if you live in Bradenton??’) and about the threat
to specific areas (“Where is Irma at right now? I have friends in
the USVI.” ). Also commonwere reflections on past hurricanes
resembling the current ones (“Looks like hurricane andrew
in 1992, check it out” ) and questions about how to interpret
the imagery (“Maybe you could explain to us laymen what the
various colors mean so we can understand better?”, “Baseline?
What does a normal hurricane look like? Asking for those of
us with no expertise on the subject.” ).

Preparedness Information: Evacuation
Risk can also be communicated through preparedness and
response recommendations, such as evacuation information.
Tweets portraying evacuation graphics (typically maps) were
replied to for a longer time than other risk image tweets. The
replies to such evacuation tweets reveal a strong need for
additional and more specific information regarding evacu-
ation orders: people wanted to know whether they should
evacuate (“If I live just north of 6, should I leave?”), whether
evacuations were mandatory (“Wait, is all of Zone A now

mandatory evacuation?”), where to evacuate to (“Where are
we suppose to go if we are in the evacuation area?!”), and how
to evacuate (“What is the route that is even open out of new ter-
rit. Tell residents where to go”). Additionally, users expressed
that the evacuation maps in tweets lacked timestamps to
indicate how up-to-date the information was.

Past Hurricane Graphics
Tweets regarding past hurricanes, whether from years ago
or days ago, were both replied to and quote tweeted signif-
icantly longer than tweets in other categories. We found
this particularly interesting because these tweets do not di-
rectly portray current threats in the way other hurricane
risk images do. Some of the longest-duration replies and
quote tweets compare the past forecast pictured to the cur-
rent hurricanes at the time to emphasize the latter’s threat:
“Andrew was always a small storm. A powerful little buzz saw.
Irma, she’s husky.” However, the vast majority of diffusion
of past forecast tweets is political in nature. Many of these
original tweets make reference to climate change, which
because of its politicized nature seems to invite this type of
response. However, many others were only politicized by
people’s responses in the replies and quote tweets.
The past forecast tweet with both the longest reply and

quote tweet durations (12+ days and 2+ days, respectively)
compares radar imagery of three hurricanes from 2010 to
three in 2017, showing the hurricanes nearly matching in
size and location, with the text: “Absolutely uncanny copy-
paste from 7 years ago. Very bizarre. #Irma #Jose #Katia #Igor
#Julia #Karl.” The replies are mainly around climate change
controversies (“Not bizarre. They script this shit.”, “But but but
global warming tho” ). Other tweets, such as one from@CNN
stating “Yes, climate change made Harvey and Irma worse,”
clearly invite such politicized responses. The surprising dif-
fusion of past hurricane image tweets is thus attributed more
to people’s desire to discuss politics than to anything having
to do with the hurricanes or their risks per se.

Political and Off-Topic Diffusion
These qualitative analyses uncovered many replies and quote
tweets that were not related to hurricanes, but rather about
fake climate change, there not being an appointed FEMA
administrator at the time, and more, and were intended to
make political statements. The tweet with the most replies
(2825) and third most retweets (13,988) was an urgent, yet
non-controversial hurricane risk message regarding Hurri-
cane Harvey: “NOTICE: The levee at Columbia Lakes has been
breached!! GET OUT NOW!!” The reason for its vast diffusion
was that it had been retweeted by @realDonaldTrump, the
official Twitter handle for the current US President, thus
exposing it to his 3.7M followers. More than 75% of replies
to this tweet were unrelated to hurricanes, and were instead
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commentary on Trump and US politics. This was the only
one of the 16,531 tweets in the dataset diffused by Trump.

To determine whether these political tweets were a large
percentage of replies overall, we randomly sampled and read
n = 100 tweets from the 36K total replies to risk images to
classify each as purely political (off-topic) or having anything
to do with hurricanes or forecasting. We found 25 off-topic
tweets. Keywords derived from the data helped in identifying
other off-topic tweets: “trump”, “climate”, “climate change”,
“global”, “warming”, “heating”, “obama”, “antichrist”, “fema”,
“donald”, “drumpf”, “white”, “suprem”, “fake”, “bush.” These
terms were used only as a starting point, as not all off-topic
tweets contain one, and not all tweets containing one were
off-topic. Based on this, a sample of n = 500 ensured no
more than a ±2.5% error in our off-topic prevalence estimate
for the entire dataset; in this sample, we found 105 off-topic
tweets for an estimated prevalence of 21%. Excluding from
this sample the off-topic replies to the tweet above that was
retweeted by Trump, this decreases to 17.3%.

7 DISCUSSION AND IMPLICATIONS
This multi-method investigation uses social media as the
platform for examination of 1) what risk images are shared
for hurricanes, 2) how these images differently diffuse based
on type of risk portrayed and type of authoritative source
user, and 3) why these images diffuse the way they do based
on recipients’ responses and questions. In this section, we
discuss how the findings contribute to HCI, highlighting
implications for design, policy, and methodology.

Design Implications
We might think of current risk imagery as boundary ob-
jects that sit between the scientific, practitioner, and lay
communities—and therefore bear a great deal of burden. Be-
cause risk communication must be directed to often millions
of people under threat, the implications of risk interpretation
are many: they must be put in relation to both the assessment
of danger felt by any one person as well as the various costs
associated with mass response. The scientific representations
present authoritative assessment, but cannot on their own re-
solve what people consequently do. This depends on further
translational work downstream, which is where there are op-
portunities for the innovation of new information products
to support risk communication.

Thus, an important implication from this work is how to
reduce the burden on risk imagery for communicating criti-
cal, yet often uncertain, information to various stakeholders.
Study 3 showed that with all hurricane risk visualizations,
laypeople/the public request information that is localized
to their particular situation, whether it pertains to where
they live, where they might travel, or where their friends
or family are located. Risk information visualizations

should be designed such that people may contextual-
ize risks to their own situations and utilize the infor-
mation more effectively, rather than interpret risks only
as they apply broadly to an entire state or geographic region.
Media platforms could enable the use of interactive images
that allow users to zoom and pan to more granular levels.
Authoritative sources who generate and share these images
could additionally outline forecasted impacts at the city- or
neighborhood-level to be visually incorporated into the risk
image or included in the associated text post. Further still,
distilled, localized information for various locations could be
presented in new risk representations meant specifically for
public use, rather than combining public risk information
with complex, scientific representations.

Such visualizations of uncertainty, risk, and probability
that are consumed by the public are notoriously difficult
to both render and interpret [19, 25]. However, uncertainty
in visualizations can help people to make better estimates
[18], suggesting that uncertainty should be made more obvi-
ous in hurricane risk images. The NHC track forecast cone
is updated annually, but graphics like spaghetti plots are
not standardized and often elicit confusion from the public.
Risk representations should convey uncertainty as ap-
propriate in understandable, meaningful ways so that
people can make best use of the information in inter-
preting risk.

Methodological Contributions
This research demonstrates the complexities of studying the
diffusion of large-scale phenomena—in this case hurricane
risk—on widely adopted social network platforms. As hurri-
canes rapidly evolve and information about them is regularly
updated, people must regularly (re)orient to the changing
risk. This rapidly changing information delivery and con-
sumption environment that we see in this case, but exists
in others too, thus requires specialized methods to describe
diffusion.
As an HCI contribution, we empirically determined in

Study 2 that the diffusion of tweets could be quantified by
two characteristics—duration and rate—in terms of three dif-
ferent mechanisms—retweets, quote tweets, and replies—to
identify those image tweets that possess distinctive diffusion
signatures. This quantitative analysis in turn inspired quali-
tative analysis to obtain further insight about why certain im-
ages and image categories diffuse. By examining replies back
to authoritative sources as well as quote tweets to friends
and followers, we gain insight on how people interpret risk
imagery through their questions and comments, as well as
the different uses of replies and quote tweets for interacting
with risk images. We see reactions that are contextualized
relative to people’s own hazards risk situations as well as
to their worldviews about other matters that disasters en-
compass, such as reactions to climate change arguments
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and political disputes around emergency response activities.
This research considers risk image diffusion as more
than just risk assessment in a strictly rationalized, in-
formation retrieval sense, and thus assesses reasons
why certain threads endure as part of a complex in-
formation environment, building upon and contributing
to the field of crisis informatics research by deepening the
questions we pose and the approaches we take.

Policy Implications
A final aim of this research is to support the needs of the
weather scientific and practitioner communities to under-
stand socio-behavioral phenomena around their information
products. To highlight a few points: As evolving atmospheric
phenomena, hurricanes can strengthen, weaken, shift course,
slow down or stall. Accordingly, the risks posed by them
evolve as well, and this evolution is represented in the risk
information produced. Updated observations and forecasts of
the hurricanes are then provided on a regular basis, and evac-
uation orders are issued or rescinded. The diffusion signature
patterns reveal a correspondence between the duration and
the temporal “relevance” of the information produced about
evolving risks. This suggests that people are broadly at-
tuned to the temporal “cadence” of different types of
hurricane risk information—i.e., that forecasts and obser-
vations turn over on the order of 1 to 3 hours, evacuation
information is more static, and that past hurricane informa-
tion can be indefinitely “relevant” as an indicator of potential
risks of a current hurricane. The inclusion of timestamps on
all risk imagery would further support this.

An important exception arose for the critical category of
evacuation, which provides actionable risk information for
the public. The median duration for retweets of evacuation
orders is about 6 hours, even though orders are issued further
in advance of landfall and not usually updated. This suggests
that evacuation information should be regularly rein-
troduced into the social media sphere for it to receive
timely attention.
Additionally, this research suggests potential changes to

practices around sharing hurricane risk imagery on social me-
dia, particularly by authoritative sources, supporting related
HCI work on rioting behavior [14] and emergency communi-
cation from police and fire [24]. Studies 1 and 2 identified and
quantified diffusion of several types of hurricane risk images,
but Study 3 showed that such diffusion metrics may not tell
the full story, as diffusion is an indicator of many different re-
actions and responses. Thus, in addition to using quantifiable
diffusion statistics offered by social media platforms, such
as “reach” and “impressions” from Twitter and Facebook,
authoritative sources who produce and share risk in-
formation should be heavily engaged in the resulting
conversations to answer questions, clear confusion, and
gauge and shape the public’s understanding of risk.
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